Abstract

Exciton bright-state fine-structure splitting (FSS) in single GaN/AlN quantum dots (QDs) is reported, presenting an important step toward the realization of room temperature single-qubit emitters for quantum cryptography and communication. The FSS in nitride QDs is up to 7 meV and thus much larger than for other QD systems. We find also a surprising dependence of FSS on the QD size, inverse to that of arsenide QDs. Now we are able to explain why FSS can only be observed in small QDs of high-emission energies. Our calculations reveal a shape/strain anisotropy as origin of the large FSS allowing different approaches to control FSS in nitrides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call