Abstract

AbstractSinglet–singlet annihilation is studied in polyfluorene (PFO) films containing different fractions ofβ‐phase chains using time‐resolved fluorescence. On a timescale of >15 ps after excitation, the results are fitted well by a time‐independent annihilation rate, which indicates that annihilation is controlled by 3D exciton diffusion. A time‐dependent annihilation rate is observed during the first 15 ps in the glassy phase and in theβ‐phase rich films, which can be explained by the slowdown of exciton diffusion after excitons reach low‐energy sites. The annihilation rate in the mixed‐phase films increases with increasing fraction ofβ‐phase present, indicating enhanced exciton diffusion. The observed trend agrees well with a model of fully dispersedβ‐phase chromophores in the surrounding glassy phase with the exciton diffusion described using the line‐dipole approximation for an exciton wavefunction extending over 2.5 nm. The results indicate that glassy andβ‐phase chromophores are intimately mixed rather than clustered or phase‐separated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.