Abstract

Herein, an original exciton energy transfer-based sensitive fluorescence sensor for the determination of Hg2+ has been designed through DNA aptamer-programmed self-assembly of CdTe quantum dots (QDs). In this work, CdTe QDs were applied as fluorescence signal source. The two pieces of T-rich aptamer played a role as molecular recognition probes which could bind to the target Hg2+ specifically. The extent of Hg2+-triggered self-assembly of QDs depended on the concentration of Hg2+, which resulted in an exciton energy transfer effect between QDs, giving an obvious fluorescence signal decrease and red-shift of the fluorescent peak. Based on this principle, we could detect the Hg2+ in two different signal modes. The limit of detection (LOD) was 3.33 nM. The proposed sensing method exhibited its application in detecting Hg2+ in real water samples with satisfactory performance. The results indicated that this proposed sensor will be of great potential in biological and analytical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call