Abstract

Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically exact method (the hierarchical equations of motion) for a model system investigating excitonic energy transfer for a broad range of parameters. Surface hopping captures the effects of the radiation mode well, both at resonance and off-resonance. We have further investigated parameters that can increase or decrease the rate of population transfer, and we find that surface hopping in general can capture both effects well. Finally, we show that the dipole self-energy term within our parameter regime does not significantly affect the system's dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.