Abstract
Cation exchange occurs via defect initiated solid-state diffusion, a process that can lead to defect formations. The effect of such inherent defect formation on carrier dynamics of cation-exchanged heterostructures remains poorly understood. Herein, we report exciton dynamics in type II CdSe/PbSe heterostructure nanorods formed via cation exchange. The majority of electrons in CdSe domains decays in 5ps due to ultrafast carrier trapping. The defect generated by cation exchange can be healed by annealing the as-synthesized CdSe/PbSe heterostructure nanorods. This study suggests a strategy for improving properties of heteronanostructures prepared by cation exchange for applications in photovoltaics and photocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.