Abstract

We find that the exciton dipole-dipole interaction in a single laterally coupled GaAs/AlGaAs quantum dot structure can be controlled by the linear polarization of a nonresonant optical excitation. When the excitation intensity is increased with the linearly polarized light parallel to the lateral coupling direction [11̅0], excitons (X1 and X2) and local biexcitons (X1X1 and X2X2) of the two separate quantum dots (QD1 and QD2) show a redshift along with coupled biexcitons (X1X2), while neither coupled biexcitons nor a redshift are observed when the polarization of the exciting beam is perpendicular to the coupling direction. The polarization dependence and the redshift are attributed to an optical nonlinearity in the exciton Förster resonant energy transfer interaction, whereby exciton population transfer between the two quantum dots also becomes significant with increasing excitation intensity. We have further distinguished coupled biexcitons from local biexcitons by their large diamagnetic coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.