Abstract

Exciton diffusion in ladder-type methyl-substituted polyparaphenylene film and solution was investigated by means of femtosecond pump-probe spectroscopy using a combined approach, analyzing exciton-exciton annihilation, and transient absorption depolarization properties. We show that the different views on the exciton dynamics offered by anisotropy decay and annihilation are required in order to obtain a correct picture of the energy transfer dynamics. Comparison of the exciton diffusion coefficient and exciton diffusion radius obtained for polymer film with the two techniques reveals that there is substantial short-range order in the film. Also in isolated chains there is considerable amount of order, as revealed from only partial anisotropy decay, which shows that only a small fraction of the excitons move to differently oriented polymer segments. It is further concluded that interchain energy transfer is faster than intrachain transfer, mainly as a result of shorter interchain distances between chromophoric units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.