Abstract
Novel solution-processing deposition techniques in tandem with chemical synthesis design of small-molecule soluble derivatives represent a viable avenue for exploring organic analogues of semiconductor alloyed systems, where excitonic properties are tunable through alloy concentration. Here these properties are explored using absorption, grazing incidence X-ray diffraction (GIXRD), and temperature-dependent/time-resolved photoluminescence spectroscopy (TRPL) in a series of crystalline thin film alloys of metal-free (H2OBPc) and metal (MOBPc) octabutoxy-phthalocyanine, H2OBPc1–xMOBPcx (M = Co, Cu, Ni, or Mn) where 0.5 ≥ x ≥ 0.001. Films are fabricated using a solution-processed, novel hollow pen-writing technique that results in millimeter-sized crystalline grains with long-range macroscopic order for all concentrations. The spectroscopy experiments produce two important results that offer great insight into the fundamental quantum mechanics of delocalized excitons in small-molecule semiconductors. First, ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.