Abstract
The recently suggested possibility that weak vibronic transitions can be excitonically enhanced in light-harvesting complexes is studied in detail. A vibronic exciton dimer model that includes ground-state vibrations is investigated using the multi-configuration time-dependent Hartree method with a parameter set typical to photosynthetic light-harvesting complexes. The absorption spectra are discussed based on the Coulomb coupling, the detuning of the site energies, and the number of vibrational modes. Fluorescence spectra calculations show that the spectral densities obtained from the low-temperature fluorescence line-narrowing measurements of light-harvesting systems need to be corrected for the effects of excitons. For the J-aggregate configuration, as in most light-harvesting complexes, the true spectral density has a larger amplitude than that obtained from the measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.