Abstract

ZnO/Zn1 − xMgxO single quantum well (SQW) structures with well widths dW between 1.1 nm and 10.4 nm were grown by plasma-assisted molecular beam epitaxy both heteroepitaxially on c-plane sapphire and homoepitaxially on (0001¯)-oriented bulk ZnO. A significantly reduced Mg incorporation in the top barrier related to the generation of stacking faults is observed for heteroepitaxial samples. Exciton localization is observed for both types of samples, while an enhancement of the exciton binding energy compared to bulk ZnO is only found for homoepitaxial SQWs for 2 nm ≤ dW ≤ 4 nm. Consistently, for homoepitaxial samples, the carrier dynamics are mainly governed by radiative recombination and carrier cooling processes at temperatures below 170 K, whereas thermally activated non-radiative recombination dominates in heteroepitaxial samples. The effects of polarization-induced electric fields are concealed for Mg concentrations x < 0.1 due to the reduction of the exciton binding energy, the screening by residual carriers as well as the asymmetric barrier structure in heteroepitaxial wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.