Abstract

Interband transitions of pseudomorphic GaN/AlxGa1−xN quantum wells are analysed theoretically with respect to the piezoelectric field utilizing a 6 × 6 Rashba–Sheka–Pikus (RSP) Hamiltonian. Band structure modifications due to the built-in Stark effect explain a shift of the emission peak in GaN/Al0.15Ga0.85N of up to 400 meV. Quantum well exciton binding energies are calculated by the variational method and are discussed in terms of spatial separation of electrons and holes by the built-in electric field, as well as the interaction between valence subbands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.