Abstract

We investigate nonradiative energy transfer (NRET) between CdSe/CdS core/shell “giant” nanocrystal quantum dots (gNQDs) and monolayer domains of molybdenum disulfide (MoS2) grown by chemical vapor deposition. We employ three sets of gNQDs with varied core/shell parameters that exhibit radiative emission from neutral and charged excitons (trions) at different spectral positions from 590 to 660 nm as confirmed by photon statistics of individual nanocrystals. Strong photoluminescence (PL) emission quenching is observed for the donor gNQDs placed on MoS2 domains, indicative of the efficient NRET. Analysis of the double-component PL decays reveals NRET from both neutral excitons and charged trions with the same efficiency. Applying a macroscopic electrodynamics model for the decay of electric-dipole emitters in the vicinity of an ultrathin semiconducting layer with a strong in-plane excitonic polarizability, we confirm high NRET efficiencies from >95% to 85% for dots with diameters from 10 to 20 nm. This demon...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.