Abstract

Photonic topological insulators are an interesting class of materials whose photonic band structure can have a band gap in the bulk while supporting topologically protected unidirectional edge modes. Recent studies on bianisotropic metamaterials that emulate the electronic quantum spin Hall effect using its electromagnetic analog are examples of such systems with a relatively simple and elegant design. In this paper, we present a rotating magnetic dipole antenna, composed of two perpendicularly oriented coils, that can efficiently excite the unidirectional topologically protected surface waves in the bianisotropic metawaveguide (BMW) structure recently realized by T. Ma et al. [Phys. Rev. Lett. 114, 127401 (2015)] despite the fact that the BMW medium does not break time-reversal invariance. In addition to achieving a high directivity, the antenna can be tuned continuously to excite reflectionless edge modes in the two opposite directions at various amplitude ratios. We demonstrate its performance through experiments and compare the results to simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call