Abstract

A new fiber optic fluorescence spectroscopic method using a liquid core waveguide (LCW) as an excitation element has been developed for detecting a fluorescence compound absorbed on an optical fiber's surface. A laser light beam was coupled into a multimode optical fiber. The distal end of the fiber was inserted into an LCW. The diverging light emerging from the fiber's end was collected and guided within the LCW. A tapered optical fiber was inserted into the LCW from the other side. Laser light traveling in the LCW evenly illuminates the tapered fiber surface and excites fluorescence molecules absorbed on the tapered fiber's surface. Fluorescence light emitted from the tapered fiber surface was collected with the fiber itself and delivered through the fiber to an optical fiber compatible spectrometer for detection. This new technique provides an efficient way for evenly exciting fluorescence compounds absorbed on an optical fiber's surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call