Abstract

Electro-fluorescent materials with 100% internal quantum efficiency (IQE) and short fluorescence lifetimes (τf, ∼ ns) are desirable and achievable by harvesting high-lying triplet excitons. However, the IQE governed by exciton utilization efficiency (EUE) and photoluminescence quantum yield (PLQY) remains low. Herein, from the electro-fluorescence process involving triplet excitons and energy gap law, we established two excited-state descriptors (triplet–triplet energy gap ΔETT and oscillator strength f) to characterize EUE, PLQY and τf, by taking a series of hot exciton compounds as prototypes. Subsequently, these descriptors were employed to perform high-throughput screening of over 5000 fluorophores, predicting 19 candidate molecules with a high IQE (>90%). We stressed that the large values of these descriptors are conducive to high EUE and PLQY and short τf. This work presents a guideline to design and screen efficient electro-fluorescent materials beyond the spin-statistical limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.