Abstract

We apply a wide range of correlated electronic structure approaches to the excited states of Ni(CO)4 and Ni(CO) as model complexes of saturated and unsaturated transition metal carbonyls respectively to understand the performance of each method, in addition to setting benchmark data for these metal carbonyls. In particular, we apply the coupled-cluster linear response hierarchy, complete-active-space self-consistent field theory, N-electron valence state multireference perturbation theory, Monte Carlo configuration interaction, and time-dependent density functional theory with a range of functionals and basis sets. We find that although the systems can qualitatively be described by a single configuration, electron correlation effects are sufficiently strong to give large single amplitudes in cluster expansions, which cause spurious solutions to the response equations for the intermediate CCn methods. DFT also performs well if care is taken to choose an appropriate functional, although for Ni(CO) several popular functionals give the incorrect ground spin-state, depending on the amount of Hartree-Fock exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.