Abstract
The orange carotenoid protein (OCP) is a crucial player in the process of nonphotochemical quenching in a large number of cyanobacteria. This water-soluble protein binds one pigment only, the keto carotenoid 3'-hydroxyechinenone, and needs to be photoactivated by strong (blue-green) light in order to induce energy dissipation within or from the phycobilisome, the main light harvesting system of these organisms. We performed transient-absorption spectroscopy on OCP samples frozen in the inactive and active forms at 77 K. By making use of target analysis we determined the excited state properties of the active form. Our results show that OCP photoactivation modifies the carotenoid excited state energy landscape. More specifically the photoactivated OCP is characterized by one state with predominantly ICT character (ICT/S1) and a lifetime of 2.3 ps, and another state with mainly S1 character (S1/ICT) with a lifetime of 7.6 ps. We also show that the kinetic model is fully consistent with the RT data obtained earlier (Berera et al., J. Phys. Chem. B 2012, 116, 2568-2574). We propose that this ICT/S1 state acts as the quencher in the OCP mediated nonphotochemical quenching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.