Abstract

Using time-dependent density functional theory (TDDFT), the excited states of the analogue model Mg -bacteriochlorophyll b - imidazole ( BChl -Im) dimer (P) for a special pair in the photosynthetic reaction center (RC) of Rhodopseudomonas (Rps.) viridis were examined. The calculated low-lying excited states and optimal geometries are in good agreement with experimental data. The order of the lowest unoccupied molecular orbital (LUMO) energies of P, the monomeric "accessory" BChl -Im (B), and bacteriopheophytin b ( H ) indicates the possibility of the light-induced electron transfer from P to H via B. The Im ligand of B destabilizes Goutermann's four-orbitals of BChl by 0.3-0.4 eV. With no energetic difference in the LUMOs between H and BChl , the Im ligands of P and B play an important role in providing a greater energetic gradient to the LUMOs along with the pathway for the excited-electron transfer in RC, resulting in the reduced reverse electron transfer from H to P (via B). Thus it is expected that the asymmetric Mg -Im interactions will directly affect the pathway of the excited-electron transfer. Using the deformed heterodimer (P') formed by the BChl halves with and without Im as the primary donor model, its cation radical P'+ was calculated as to whether the experimental asymmetric spin-density distribution can reproduce. The excited states of the analogue model Zn - BChl -Im dimer for a special pair in RC of the recently discovered Acidiphilium rubrum were also examined for a comparison with P.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call