Abstract
Emission related to rare earth ions in solids takes place usually due to 4fn→4fn and 4fn−15d1→4fn internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at the excited state and the hole at the ground state of impurity. The latest results on high pressure investigations of luminescence related to Pr3+ and Eu2+ in different lattices are briefly reviewed. The influence of pressure on anomalous luminescence and 4fn−15d1→4fn luminescence in BaSrF2:Eu2+ and LiBaF3:Eu2+ systems and Pr3+ 4fn→4fn emission quenching is presented and discussed. A theoretical model describing the impurity-trapped exciton as a system where a hole is localized at the impurity and an electron is captured by Coulomb potential at Rydberg-like states is developed. The results show the importance of local lattice relaxation for the creation of stable impurity-trapped exciton states. The ligands shifts create a potential barrier that controls the effect of mixing between the Rydberg-like electron and localized electron wave functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.