Abstract

Excited-state symmetry breaking (ESB) has attracted much attention because it is often observed in symmetric multipolar chromophores designed as two-photon absorption/emission materials. Herein, we report an ensemble and single-molecule fluorescence imaging and spectroscopy investigation of ESB in hexakis[4-(p-dioctylaminostyryl)phenylethynyl]benzene(DB6), a two-photon absorber possessing a C6-symmetric π-D6 structure (π = hexaethynylbenzene, D = (p-dioctylaminostyryl)phenyl group) consisting of three equivalent D-π-D moieties. Ensemble and single-molecule measurements and theoretical calculations revealed that DB6 undergoes a photoabsorption process with two orthogonal transition dipole moments, whereas it fluoresces with a single transition dipole moment after one- or two-step ESB upon photoexcitation, depending on the environmental polarity. In nonpolar solvents and polymer films, one of the three D-π-D sites becomes planar, and the excited state is localized on this moiety: a [Dδ+-πδ--Dδ+]* quadrupolar state is formed. In polar solvents, the symmetry is further broken within the planarized D-π-D moiety, and the excited state is localized on one of the two D-π sites; i.e., a D-[πδ--Dδ+]* dipolar state is generated. Hence, DB6 can behave like a multichromophore with multiple emission sites in the molecule, which was demonstrated by stepwise photobleaching under photon antibunching conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call