Abstract

Abstract Combining femtosecond transient vibrational spectroscopy and high-level calculations is a powerful tool in the determination of excited-state structures. Striking differences in the experimental vibrational pattern of the locally excited states of 4-(dimethylamino)benzonitrile (DMABN) and 4-aminobenzonitrile (ABN) are explained on the basis of molecular structures obtained from ab initio complete-active-space self-consistent-field (CASSCF) calculations, giving evidence for a strong sensitivity of the molecular structure on modest changes in the substituents. The 4.0 ps charge-transfer time for DMABN in acetonitrile is resolved for the first time by tracking the downshifted CN stretching mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.