Abstract
We study the integrability of the two-spin elliptic Gaudin model for arbitrary values of the Hamiltonian parameters. The limit of a very large spin coupled to a small one is well described by a semiclassical approximation with just one degree of freedom. Its spectrum is divided into bands that do not overlap if certain conditions are fulfilled. In spite of the fact that there are no quantum phase transitions in each of the band heads, the bands show excited-state quantum phase transitions separating a region in which the parity symmetry is broken from another region in which time-reversal symmetry is broken. We derive analytical expressions for the critical energies in the semiclassical approximation, and confirm the results by means of exact diagonalizations for large systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.