Abstract
Photoinduced excited state intramolecular proton transfer (ESIPT) reactions comprise an important and extensively explored class of reactions in photochemistry. Till date, plant flavonols are one of the most widely known class of naturally abundant organic molecules exemplifying ESIPT and ‘two color’ fluorescence. From a bio-medical perspective, flavonols and related polyphenols, which are powerful antioxidants, have attracted significant interest as novel drugs (of high potency and low cyto-toxicity) for the prophylaxis and therapy of free radical induced and other important diseases. This article presents perspectives on proton transfer in photoexcited organic molecules from a historical context, emphasizing ESIPT reactions, in particular. Highlights of representative research findings are discussed, exemplifying the promising potential of plant flavonols as their own ESIPT based ‘fluorescence sensors’ for exploring their interactions with proteins, DNA (possessing duplex as well as higher order structures), and biomembranes, which represent the targets underlying the various pharmacological actions of flavonols. The usefulness of such approach for studying the confinement of intrinsically fluorescent flavonols in nano-vehicles for drug encapsulation, is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.