Abstract

We report on proof of principle measurements of a concept for a super-resolution imaging method that is based on excitation field density-dependent lifetime modulation of semiconductor nanocrystals. The prerequisite of the technique is access to semiconductor nanocrystals with emission lifetimes that depend on the excitation intensity. Experimentally, the method requires a confocal microscope with fluorescence-lifetime measurement capability that makes it easily accessible to a broad optical imaging community. We demonstrate with single particle imaging that the method allows one to achieve a spatial resolution of the order of several tens of nanometers at moderate fluorescence excitation intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.