Abstract

Carbene–metal–amides (CMAs) are an emerging class of photoemitters based on a linear donor–linker–acceptor arrangement. They exhibit high flexibility about the carbene–metal and metal–amide bonds, leading to a conformational freedom which has a strong influence on their photophysical properties. Herein we report CMA complexes with (1) nearly coplanar, (2) twisted, (3) tilted, and (4) tilt-twisted orientations between donor and acceptor ligands and illustrate the influence of preferred ground-state conformations on both the luminescence quantum yields and excited-state lifetimes. The performance is found to be optimum for structures with partially twisted and/or tilted conformations, resulting in radiative rates exceeding 1 × 106 s–1. Although the metal atoms make only small contributions to HOMOs and LUMOs, they provide sufficient spin–orbit coupling between the low-lying excited states to reduce the excited-state lifetimes down to 500 ns. At the same time, high photoluminescence quantum yields are maintained for a strongly tilted emitter in a host matrix. Proof-of-concept organic light-emitting diodes (OLEDs) based on these new emitter designs were fabricated, with a maximum external quantum efficiency (EQE) of 19.1% with low device roll-off efficiency. Transient electroluminescence studies indicate that molecular design concepts for new CMA emitters can be successfully translated into the OLED device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call