Abstract

An advanced self-consistent plasma physics model including non-equilibrium vibrational kinetics, a collisional radiative model for atomic species, a Boltzmann solver for the electron energy distribution function, a radiation transport module coupled to a steady inviscid flow solver and, has been applied to study non-equilibrium in high enthalpy flows for Jupiter’s atmosphere. Two systems have been considered, a hypersonic shock tube and nozzle expansion, emphasizing the role of radiation reabsorption on macroscopic and microscopic flow properties. Large differences are found between thin and thick plasma conditions not only for the distributions, but also for the macroscopic quantities. In particular, in the nozzle expansion case, the electron energy distribution functions are characterized by a rich structure induced by superelastic collisions between excited species and cold electrons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call