Abstract

The excited state intra-molecular proton transfer dynamics of 1-hydroxyanthraquinone in solution are investigated by femtosecond transient absorption spectroscopy and quantum chemistry calculations. Two characteristic bands of excited state absorption and stimulated emission are observed in transient absorption spectra with the excitation by the pump wavelength of 400 nm. From the delayed stimulated emission signal, the time scale of the intra-molecular proton transfer is determined to be about 32 fs. The quantum chemistry calculations show that the molecular orbits and the order of the S2 and S1 states are reversal and a conical intersection is demonstrated to exist along the proton transfer coordinate. After proton transfer, the second excited state of tautomer populated via the conical intersection undergoes the internal conversion with ∼200 fs and the following intermolecular energy relaxation with ∼16 ps. The longer component 300 ps can be explained in terms of the relaxation from excited-state tautomer to its ground state. From our observations, two proton transfer pathways via a conical intersection are proposed and the dominated one preserves the molecular orbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.