Abstract
Potential energy surfaces (PES) for the ground and excited state intramolecular proton transfer (ESIPT) processes in 5-hydroxy-flavone (5HF) were studied using DFT-B3LYP/6-31G(d) and TD-DFT/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer (GSIPT) in 5HF. Excited states PES calculations support the existence of ESIPT process in 5HF. ESIPT in 5HF has been explained in terms of HOMO, LUMO electron density of the enol and keto tautomer of 5HF. PES scan by phenyl group rotation suggests that the twisted form, i.e., phenyl group rotated by 18.7° out of benzo-γ-pyrone ring plane is the most stable conformer of 5HF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.