Abstract

The photochemistry of three 9-(dihydroxyphenyl)anthracenes 6-8 was studied in neat CH(3)CN and selected organic solvents, to investigate excited state intramolecular proton transfer (ESIPT) from the phenol to the anthracene moiety. In D(2)O-CH(3)CN mixtures, the observed deuterium exchange of 6-8 is consistent with water-mediated (formal) ESIPT process from the ortho phenolic OH to the 10'-position of the anthracene ring, giving rise to quinone methide (QM) intermediates 12-14. There is no ESIPT for the corresponding methoxy-substituted compounds. Introduction of an extra hydroxyl group onto the phenol ring at different positions led to a range of deuterium exchange quantum yields (Φ = 0.03 to 0.15). In addition to the anticipated ESIPT process to the 10'-position, in neat CH(3)CN and other organic solvents, 6 (but not 7 or 8) undergoes a clean photocyclization to give bridged product 19 in quantitative yield. The mechanism of this unique photocyclization may involve a direct ESIPT or a 1,4-hydrogen transfer from the ortho phenolic OH to the 9'-position of the anthracene ring, generating a zwitterion (20) or diradical (21) intermediate, respectively, followed by ring closure. Fluorescence studies of 6 in various solvents show the existence of both local excited and intramolecular charge transfer states whereas only the former was present for 7 and 8, offering a possible rationalization for the photocyclization pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call