Abstract

We present a new first-principles formalism for calculating forces for optically excited electronic states using the interacting Green's function approach with the GW Bethe-Salpeter-equation method. This advance allows for efficient computation of gradients of the excited-state Born-Oppenheimer energy, allowing for the study of relaxation, molecular dynamics, and photoluminescence of excited states. The approach is tested on photoexcited carbon dioxide and ammonia molecules, and the calculations accurately describe the excitation energies and photoinduced structural deformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.