Abstract

The molecular structures of 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), were calculated by using time-dependent density functional theory (TDDFT) model with M062X method with 6-311G (d, p) basis set. In this work, the ABTS were theoretically investigated from the geometric structure, the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), the energy level gap ΔEHOMO-LUMO of the molecular ground state, excited stated properties and the electronic absorption spectra of different oxidation states. We studied the energy levels of LUMO and HOMO of ABTS in different oxidation states. Frontier molecular orbital analysis can provide insight into the nature of excited states. ABTS was synthesized from N-ethylamine by total synthesis. Then, we measured the UV–Vis spectra of ABTS before and after being oxidized by K2S2O8. The calculated electronic structures and photochemical properties of different oxidation state of ABTS were in accordance with the experimental result. This work demonstrates the relationship between the electronic structures and photochemistry of different oxidation states ABTS hence paves the way for the rationally synthesis and deepen understanding of the photophysical properties of ABTS materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.