Abstract

Red fluorescent proteins with a large Stokes shift offer a limited autofluorescence background and are used in deep tissue imaging. Here, by introducing the free amino group in Aequorea victoria, the electrostatic charges of the p-hydroxybenzylidene imidazolinone chromophore of green fluorescent protein (GFP) have been altered resulting in an unusual, 85 nm red-shifted fluorescence. The structural and biophysical analysis suggested that the red shift is due to positional shift occupancy of Glu222 and Arg96, resulting in extended conjugation and a relaxed chromophore. Femtosecond transient absorption spectra exhibited that the excited state relaxation dynamics of red-shifted GFP (rGFP) (τ4 = 234 ps) are faster compared to the A. victoria green fluorescent protein (τ4 = 3.0 ns). The nanosecond time-resolved emission spectra of rGFP reveal the continuous spectral shift during emission by a solvent reorientation in the chromophore. Finally, the molecular dynamics simulations revealed the rearrangement of the hydrogen bond interactions in the chromophore vicinity, reshaping the symmetric distribution of van der Waals space to fine tune the GFP structure resulting from highly red-shifted rGFP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.