Abstract

We report synthesis and detailed spectroscopic study of three water-soluble polythiophene derivatives with distinct homologous oligo(ethylene oxide) side-chain lengths and lower critical solution temperatures (LCSTs). The linear absorption spectra exhibit reversible shifts and broadening with the variation of their aqueous solution temperature, whereas the corresponding steady-state fluorescence emission spectra were found to show negligible shifts and only minor changes in their line shape. Measurements of picosecond time-resolved fluorescence at chosen emission wavelengths reveal a strong dependence of the isotropic decays on both side-chain length and aqueous solution temperature. With lengthening of the side chain, the isotropic decays become not only remarkably slow but also increasingly complex. Except for the polymer with the shortest side chain, significant acceleration of the isotropic decays was found when the solution temperature was raised to the corresponding LCSTs and beyond, which further causes formation of large aggregates as evident by the physical appearance change from clear solutions to turbid suspensions. Direct evidence for a temperature-induced change of polymer chain conformation was obtained through measurements of time-resolved fluorescence anisotropies, which are characterized by a substantial increase of the initial values from ~0.2 to 0.4 and the appearance of a pronounced fast decay component with an estimated lifetime of 36 ps. The high initial anisotropy of ~0.4 observed for the two polymers with longer side-chains above their LCSTs suggests that the polymer chains are highly ordered in the aggregates. The observed effects of side-chain length and solution temperature are discussed by considering the conformational relaxation of the polymer backbones and occurrence of interchain energy transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.