Abstract
The excited-state dynamics of the radical cations of perylene (PE•+), tetracene (TE•+), and thianthrene (TH•+), as well as the radical anions of anthraquinone (AQ•-) and tetracenequinone (TQ•-), formed by γ irradiation in low-temperature matrices (PE•+, TH•+, AQ•-, and TQ•-) or by oxidation in sulfuric acid (PE•+, TE•+, and TH•+) have been investigated using ultrafast pump−probe spectroscopy. The longest ground-state recovery time measured was 100 ps. The excited-state lifetime of PE•+ is substantially longer in low-temperature matrices than in H2SO4, where the effects of perdeuteration and of temperature on the ground-state recovery dynamics indicate that internal conversion is not the major decay channel of PE•+*. The data suggest that both PE•+* and TE•+* decay mainly through an intermolecular quenching process, most probably a reversible charge transfer reaction. Contrarily to AQ•-*, TQ•-* exhibits an emission in the visible which, according to theoretical calculations, occurs from an upper excited state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.