Abstract

Indigo, a rich blue dye, is an incredibly photostable molecule that has survived in ancient art for centuries. It is also unique in that it can undergo both an excited-state hydrogen and proton transfer on the picosecond timescale followed by a ground-state back transfer. Previously, we performed gas phase excited-state lifetime studies on indigo to study these processes in a solvent-free environment, combined with excited-state calculations. We found two decay pathways, a fast sub-nanosecond decay and a slow decay on the order of 10 ns. Calculations of the excited-state potential energy surface found that both hydrogen and proton transfer are nearly isoenergetic separated by a 0.1 eV barrier. To further elucidate these dynamics, we now report a study with deuterated indigo, using resonance-enhanced multi-photon ionization and pump-probe spectroscopy with mass spectrometric isotopomer selection. From new calculations of the excited-state potential energy surface, we find sequential double-proton or hydrogen transfer, whereby the trajectory to the second transfer passes a second barrier and then encounters a conical intersection that leads back to the ground state. We find that deuteration only increases the excited-state lifetimes of the fast decay channel, suggesting tunneling through the first barrier, while the slower channel is not affected and may involve a different intermediate state.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call