Abstract

Absorption of ultraviolet radiation by DNA bases results in ultrafast internal conversion to the ground state, which minimizes photodamage. However, exogenous and endogenous alkylating agents present in the cellular environment can methylate the nucleobases in DNA. In particular, methylation of guanosine at the O6 position in DNA leads to the formation of the O6-methylguanosine adduct, which may alter the photostability of DNA. This contribution demonstrates that O6-methylation of guanosine red shifts its ground-state absorption spectrum and slows down the rate of internal conversion to the ground state by ∼40-fold in aqueous solution. The 40-fold decrease in the rate of excited-state decay increases the probability of photodamage within cellular DNA. It is proposed that the longer decay lifetime corresponds to relaxation of the excited-state population in O6-methylguanosine along a C6-puckered reaction coordinate in the 1ππ*(La) potential energy surface that runs parallel to an ultrafast internal conversion pathway along a C2-puckered coordinate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.