Abstract

The photoinitiated proton-coupled electron transfer (PCET) process in photoacid-based adducts is predominantly governed by the evolution of the electron-proton transfer state. However, such a process is underexplored in the case of photobases as the excited states evolve through multiple competitive channels. Here, we elucidate the excited-state dynamics of a photobase, 4-[4'-(dimethylamino)styryl]pyridine (DMASP), in the presence of hexafluoroisopropanol (HFIP) that enables PCET. Transient absorption measurements show the evolution of a protonated species in the excited state with a time constant of ∼2.5 ps. Fluorescence upconversion measurements reveal the signatures of an emissive intramolecular charge transfer state and a protonated state. The role of such states is further confirmed by time-resolved measurements in the presence of trifluoroacetic acid and computational analysis. Furthermore, the proton-abstraction dynamics of DMASP is analyzed in bulk methanol and butanol solvents. The extent of proton abstraction by DMASP is found to be higher in the presence of HFIP when compared with the normal alcohols over a time period of a few picoseconds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call