Abstract

The rule of the geometric mean in rates and kinetic isotope effects has long been used as a criterion for identifying the reaction mechanism, e.g., stepwise vs. concerted, for double proton transfer reactions. Potential energy surfaces of double proton transfers for excited state tautomerization in a 1:1 7-azaindole:H 2O complex were generated at the MRPT2//CASSCF(10,9)/6-31G(d,p) level. Variational transition state theory, including multidimensional tunneling approximation, was used to calculate rates and kinetic isotope effects. No intermediates were present along the reaction coordinate. Two protons in the excited state tautomerization were transferred concertedly, albeit asynchronously. Positions of the variational transition states depend very much on the isotopic substitution. The asynchronicity of two protons in flight breaks the underlying assumption of the rule of the geometric mean so that the relation, k HH/ k HD ≈ k HD/ k DD, is no longer valid in the excited state double proton transfer. Breakdown of the geometric mean rule does not necessarily entail that the reaction mechanism is stepwise; therefore this rule should be used very carefully as a criterion for identification of the mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.