Abstract

Valence-to-core x-ray emission spectroscopy (VtC XES) combines the sample flexibility and element specificity of hard x-rays with the chemical environment sensitivity of valence spectroscopy. We extend this technique to study geometric and electronic structural changes induced by photoexcitation in the femtosecond time domain via laser-pump, x-ray probe experiments using an x-ray free electron laser. The results of time-resolved VtC XES on a series of ferrous complexes [Fe(CN)2n(2, 2'-bipyridine)3-n]-2n+2, n = 1, 2, 3, are presented. Comparisons of spectra obtained from ground state density functional theory calculations reveal signatures of excited state bond length and oxidation state changes. An oxidation state change associated with a metal-to-ligand charge transfer state with a lifetime of less than 100 fs is observed, as well as bond length changes associated with metal-centered excited states with lifetimes of 13 ps and 250 ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.