Abstract

The excited state behavior of tryptamine and 1,2,3,4-tetrahydrocarbazoles possessing alkylamino side chains in the absence and presence of 18-crown-6 in MeOH-H/sub 2/O (9:1) mixtures has been studied by means of nanosecond single-photon counting, fluorimetry, and photochemical H-D isotope exchange. The fluorescence intensity of these indoles increases significantly with increasing concentration of 18-crown-6. The relatively short lifetime of the tryptamine ammonium ion 1 is not ascribed to external quenching but rather to internal quenching. The rate constant k/sub q/ for internal quenching can be estimated from the equation k/sub q/ = tau/sub 0//sup -1/ - tau/sub max//sup -1/, where tau/sub 0/ and tau/sub max/ represent the fluorescence lifetimes for free 1 and the 1:1 1-crown ether complex, respectively. Internal quenching originates from electrophilic proton attack by the -N/sup +/H/sub 3/ (or -N/sup +/D/sub 3/) group of 1 at the C-4 position of the excited indole ring. For 3 (the tetrahydrocarbazole derivative R(CH/sub 2/)/sub 3/N/sup +/H/sub 3/) the k/sub q/ value comprises the electrophilic proton attack at the C-8 position plus other quenching (probably charge-transfer quenching) between the excited indole moiety (R*) and the -N/sup +/H/sub 3/ (or -N/sup +/D/sub 3/) group. The stabilization constant K/sub g/ for the corresponding ammonium ionmore » and 18-crown-6 can be determined by fluorimetry. The kinetic and thermodynamic parameters for the internal quenching and the complex formation, respectively, have been described.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.