Abstract
Luminescence thermometry, an alternative to thermal imaging using the thermovision technique, requires the development of new approaches and a thorough understanding of the physical phenomena involved, in order to improve the temperature readout parameters. A phenomenon that has recently been shown to cause an extremely strong increase in the emission intensity for the temperature elevation is the thermally induced excited state absorption. This work demonstrates that taking advantage of the strong thermal dependence of the thermally induced excited state absorption process, the limitation associated with the two thermally coupled excited levels usually involved in the ratiometric temperature readout can be overcome, improving the thermometric properties of the luminescent thermometer. The same excitation wavelength was used to induce the emission resulting from the thermally induced excited state absorption of the Tb3+ ions and ground-state absorption of the other type of co-dopant ions causing the opposite nature of the thermal dependence of their emission intensities. Moreover, thanks to the strong color changes exhibited by the phosphors, it was possible to demonstrate the applicability of the proposed approach for through-object 2D thermal imaging of a microelectronic printed circuit board covered with a glass plate using an ordinary commercial digital camera, where the thermovision camera fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.