Abstract

The main goal of this research is to provide a novel model that describes an optically heated layer of an excited non-local microelongated semiconductor material. In a rotating field, the model is examined as the photo-excitation processes occur. The model presents the microelongation scalar function, which describes the microelement processes according to the micropolar-thermoelasticity theory. The model analyses the interaction situation between optical-thermomechanical waves under the impact of rotation parameters when the microelongation parameters are taken into consideration according to the photo-thermoelasticity theory. During the electronic and thermoelastic deformation, the fundamental governing equations were obtained in dimensionless form, and they were investigated using the harmonic wave methodology. Two-dimensional general solutions for the fundamental fields of an isotropic, homogeneous, and linear non-local microelongated semiconductor medium are derived (2D). The free surface of the medium is subjected to several conditions to produce complete solutions due to the laser pulse. The physical properties of silicon (Si) material are used to show numerical modeling of the main fields. Some comparisons are made and graphically shown under the impact of various relaxation time and rotational parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call