Abstract

In addition to protective effects within the adult central nervous system (CNS), in vivo application of N-methyl-d-aspartate inhibitors such as (+) MK-801 have been shown to induce neurodegeneration in neonatal rats over a specific developmental period. We have systematically mapped the nature and extent of MK-801-induced neurodegeneration throughout the neonatal murine brain in order to genetically dissect the mechanism of these effects. Highest levels of MK-801-induced neurodegeneration are seen in the cerebellar external germinal layer; while mature neurons of the internal granule layer are unaffected by MK-801 treatment. Examination of external germinal layer neurons by electron microscopy, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) and bromodeoxyuridine (BrdU) labeling, and caspase-3 activation demonstrate that these neurons die through the process of programmed cell death soon after they exit from the cell cycle. Significantly, ablation of caspase-3 activity completely inhibited the MK-801-induced (and developmental) programmed cell death of external germinal layer neurons. Similar to caspase-3, inactivation of muscarinic acetylcholine receptors in vivo using scopolamine inhibited MK-801-induced programmed cell death. By contrast, the GABAergic agonist diazepam, either alone or in combination with MK-801, enhanced programmed cell death within external germinal layer neurons. These data demonstrate that, in vivo, cerebellar granule neurons undergo a dramatic change in intracellular signaling in response to molecules present in the local cellular milieu during their first 24 h following exit from the cell cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call