Abstract
Tardive dyskinesia (TD) is a serious motor side-effect of chronic neuroleptic therapy. Chronic treatment with neuroleptics leads to the development of oral abnormal movements in rats known as vacuous chewing movements (VCMs). Vacuous chewing movements in rats have been widely accepted as an animal model of tardive dyskinesia. Chronic blockade of D2 inhibitory dopamine (DA) receptors localized on glutamatergic terminals in the striatum leads to the persistent enhanced release of glutamate that kills the striatal output neurons. The object of the present study was to explore the role of glutamatergic modulation on the neuroleptic-induced VCMs. Rats were chronically (for 21 days) treated with haloperidol (1.5 mg/kg, i.p.) to produce VCMs. The neuroleptic-induced VCMs viz., vertical jaw movements, tongue protrusions and bursts of jaw tremors, were counted during a 5 min observation period. Dizocilpine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, dose dependently (0.02 and 0.05 mg/kg) reduced haloperidol-induced VCMs. Felodipine (5 and 10 mg/kg), an L-type calcium-channel blocker, also significantly reduced the VCM count. N-omega-nitro-L-arginine methyl ester (L-NAME) (25 and 50 mg/kg), a nitric oxide synthase inhibitor, also reduced the VCM count in an L-arginine-sensitive manner. In conclusion, the findings of the present study indicated NMDA receptor involvement in haloperidol-induced VCMs, and also suggested the possible involvement of calcium and nitric oxide in haloperidol-induced VCMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.