Abstract

Alzheimer's disease (AD) is characterized by the accumulation of soluble amyloid-β oligomers (AβOs) in the brain, which disrupt synaptic function and promote cognitive decline. Here, we investigated the effects of AβOs on excitatory and inhibitory synaptic transmission and plasticity by performing stereotaxic injections of AβOs directly into the hippocampal CA1 region, followed by hippocampal slice isolation for electrophysiological measurements. AβOs injections altered basal excitatory synaptic transmission, reducing field excitatory postsynaptic potentials (fEPSPs) and impairing excitatory long-term potentiation (LTP). Additionally, AβOs injections significantly increased basal inhibitory synaptic transmission, as evidenced by the increased amplitude of field inhibitory postsynaptic potentials (fIPSPs), but impaired the induction and maintenance of inhibitory long-term potentiation (iLTP). Accordingly, we propose that AβOs injections induce the saturation of the GABAergic system and thus disrupt the hippocampal excitatory-inhibitory balance. These findings highlight the dual impact of AβOs on both excitatory and inhibitory synapses, generating synaptic dysregulation and possibly worsening cognitive decline in AD. Understanding these mechanisms could provide new insights for developing therapies to restore synaptic balance and hippocampal function in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.