Abstract

We numerically study the role of excitatory and inhibitory interactions in the aggregations of male frogs. In most frogs, males produce sounds to attract conspecific females, which activates the calling behavior of other males and results in collective choruses. While the calling behavior is effective for mate attraction, it requires high energy consumption. In contrast, satellite behavior is an alternative mating strategy in which males deliberately stay silent in the vicinity of a calling male and attempt to intercept the female attracted to the caller, allowing the satellite males to reduce their energy consumption while having a chance of mating. Here we propose a hybrid dynamical model in which male frogs autonomously switch among three behavioral states (i.e., calling state, resting state, and satellite state) due to the excitatory and inhibitory interactions. Numerical simulations of the proposed model demonstrated that (1) both collective choruses and satellite behavior can be reproduced and (2) the satellite males can prolong the energy depletion time of the whole aggregation while they split the maximum chorus activity into two levels over the whole chorusing period. This study highlights the importance of the multiple behavioral types and their transitions for the performance of the whole aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call