Abstract
Glutamate-induced excitotoxicity is considered as a major cause of neurodegenerative disease. Excitatory amino acid transporters (EAATs) on glial cells are responsible for the homeostasis of extracellular glutamate in the central nervous system which may contribute to the prevention of excitotoxic neurodegeneration. However, the differential EAAT expression in astrocytes and microglia is not fully understood. In this study, we compared the expression of EAATs in astrocytes and microglia, and we assessed the neuroprotective and neurotoxic function of astrocytes and microglia by a co-culture system. RT-PCR analyses detected that astrocytes expressed each EAAT (EAAT1-5) whereas microglia did not express EAAT4. Western blot analyses demonstrated that astrocytes express a much larger amount of membrane-localized EAATs than microglia. Astrocytes prevented excito-neurotoxicity by the reduction of exogenous glutamate whereas microglia did not. Conversely, activated microglia released an excess of glutamate that induced excitotoxic neuronal death. Astrocytes rescued neurons from microglial glutamate-induced death in a ratio-dependent manner. Inhibition of EAATs abolished glutamate uptake and the neuroprotective effect of astrocytes, but it did not alter any microglial neurotoxic or neuroprotective effects. These results revealed that astrocytic EAATs can counteract microglial glutamate-induced neuronal death whereas microglial EAATs are inconsequential to neurotoxicity and neuroprotection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Brain Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.