Abstract

Na_{2}Co_{2}TeO_{6} is a proposed approximate Kitaev magnet, yet its actual magnetic interactions are elusive due to a lack of knowledge on the full excitation spectrum. Here, using inelastic neutron scattering and single crystals, we determine the system's temperature-dependent magnetic excitations over the entire Brillouin zone. Without committing to specific models, we unveil a distinct signature of the third-nearest-neighbor coupling in the spin waves, which signifies the associated distance as an emerging effective link in the ordered state. The presence of at least six nonoverlapping spin-wave branches is at odds with all models proposed to date. Above the ordering temperature, persisting dynamic correlations can be described by equal-time magnetic structure factors of a hexagonal cluster, which reveal the leading instabilities. Our result sets definitive constraints on theoretical models for Na_{2}Co_{2}TeO_{6} and provides new insight for the materialization of the Kitaev model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call