Abstract

AbstractThe achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which limits the accessibility of excitation wavelength‐dependent (Ex‐De) PL. Consequently, the wider application of Ln3+ ions in light‐emitting devices is hindered. In this study, we present an organic–inorganic compound, (DMA)4LnCl7 (DMA+=[CH3NH2CH3]+, Ln3+=Ce3+, Tb3+), which serves as an independent host lattice material for efficient Ex‐De emission by doping it with trivalent antimony (Sb3+). The pristine (DMA)4LnCl7 compounds exhibit high luminescence, maintaining the characteristic sharp emission bands of Ln3+ and demonstrating a high PL quantum yield of 90–100 %. Upon Sb3+ doping, the compound exhibits noticeable Ex‐De emission with switchable colors. Through a detailed spectral study, we observe that the prominent energy transfer process observed in traditional host‐sensitized systems is absent in these materials. Instead, they exhibit two independent emission centers from Ln3+ and Sb3+, each displaying distinct features in luminous color and radiative lifetime. These findings open up new possibilities for designing Ex‐De emitters based on Ln3+ ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call