Abstract

We show how to create long-range interactions between alkali atoms in different hyperfine ground states, with the goal of coherent quantum transport. The scheme uses off-resonant dressing with atomic Rydberg states. We demonstrate coherent migration of electronic excitation through dressed dipole–dipole interaction by full solutions of models with four essential states per atom and give the structure of the spectrum of dressed states for a dimer. In addition, we present an effective (perturbative) Hamiltonian for the ground-state manifold and show that it correctly describes the full multi-state dynamics. We discuss excitation transport in detail for a chain of five atoms. In the presented scheme, the actual population in the Rydberg state is kept small. Dressing offers many advantages over the direct use of Rydberg levels: it reduces ionization probabilities and provides an additional tuning parameter for lifetimes and interaction strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.